Disrupting the Pairing Between let-7 and Hmga2 Enhances Oncogenic Transformation
Author(s) -
Christine Mayr,
Michael T. Hemann,
David P. Bartel
Publication year - 2007
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.1137999
Subject(s) - psychological repression , microrna , carcinogenesis , biology , hmga2 , transformation (genetics) , genetics , oncogene , phenotype , oncomir , chromosomal translocation , microbiology and biotechnology , gene , gene expression , cell cycle
MicroRNAs (miRNAs) are approximately 22-nucleotide RNAs that can pair to sites within messenger RNAs to specify posttranscriptional repression of these messages. Aberrant miRNA expression can contribute to tumorigenesis, but which of the many miRNA-target relationships are relevant to this process has been unclear. Here, we report that chromosomal translocations previously associated with human tumors disrupt repression of High Mobility Group A2 (Hmga2) by let-7 miRNA. This disrupted repression promotes anchorage-independent growth, a characteristic of oncogenic transformation. Thus, losing miRNA-directed repression of an oncogene provides a mechanism for tumorigenesis, and disrupting a single miRNA-target interaction can produce an observable phenotype in mammalian cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom