Dynamic metal-polymer interaction for the design of chemoselective and long-lived hydrogenation catalysts
Author(s) -
Songhyun Lee,
SeungJae Shin,
Hoyong Baek,
Yeonwoo Choi,
Kyunglim Hyun,
Myungeun Seo,
Kyunam Kim,
DongYeun Koh,
Hyungjun Kim,
Minkee Choi
Publication year - 2020
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.abb7369
Subject(s) - catalysis , chemoselectivity , polymer , metal , materials science , chemistry , organic chemistry
Metal catalysts are generally supported on hard inorganic materials because of their high thermochemical stabilities. Here, we support Pd catalysts on a thermochemically stable but "soft" engineering plastic, polyphenylene sulfide (PPS), for acetylene partial hydrogenation. Near the glass transition temperature (~353 K), the mobile PPS chains cover the entire surface of Pd particles via strong metal-polymer interactions. The Pd-PPS interface enables H activation only in the presence of acetylene that has a strong binding affinity to Pd and thus can disturb the Pd-PPS interface. Once acetylene is hydrogenated to weakly binding ethylene, re-adsorption of PPS on the Pd surface repels ethylene before it is further hydrogenated to ethane. The Pd-PPS interaction enables selective partial hydrogenation of acetylene to ethylene even in an ethylene-rich stream and suppresses catalyst deactivation due to coke formation. The results manifest the unique possibility of harnessing dynamic metal-polymer interaction for designing chemoselective and long-lived catalysts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom