Cell invasion in digital microfluidic microgel systems
Author(s) -
Bingyu B. Li,
E. Scott,
M. Dean Chamberlain,
Bill T. V. Duong,
Shuailong Zhang,
Susan J. Done,
Aaron R. Wheeler
Publication year - 2020
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aba9589
Subject(s) - microfluidics , digital microfluidics , cell , transcriptome , nanotechnology , microbiology and biotechnology , materials science , biology , optoelectronics , biochemistry , gene expression , gene , electrowetting , dielectric
Microfluidic methods for studying cell invasion can be subdivided into those in which cells invade into free space and those in which cells invade into hydrogels. The former techniques allow straightforward extraction of subpopulations of cells for RNA sequencing, while the latter preserve key aspects of cell interactions with the extracellular matrix (ECM). Here, we introduce "cell invasion in digital microfluidic microgel systems" (CIMMS), which bridges the gap between them, allowing the stratification of cells on the basis of their invasiveness into hydrogels for RNA sequencing. In initial studies with a breast cancer model, 244 genes were found to be differentially expressed between invading and noninvading cells, including genes correlating with ECM-remodeling, chemokine/cytokine receptors, and G protein transducers. These results suggest that CIMMS will be a valuable tool for probing metastasis as well as the many physiological processes that rely on invasion, such as tissue development, repair, and protection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom