Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California
Author(s) -
Xingying Huang,
Daniel L. Swain,
Alex Hall
Publication year - 2020
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aba1323
Subject(s) - downscaling , precipitation , environmental science , storm , climatology , flood myth , climate extremes , climate model , atmospheric sciences , climate change , meteorology , geology , geography , oceanography , archaeology
Precipitation extremes will likely intensify under climate change. However, much uncertainty surrounds intensification of high-magnitude events that are often inadequately resolved by global climate models. In this analysis, we develop a framework involving targeted dynamical downscaling of historical and future extreme precipitation events produced by a large ensemble of a global climate model. This framework is applied to extreme "atmospheric river" storms in California. We find a substantial (10 to 40%) increase in total accumulated precipitation, with the largest relative increases in valleys and mountain lee-side areas. We also report even higher and more spatially uniform increases in hourly maximum precipitation intensity, which exceed Clausius-Clapeyron expectations. Up to 85% of this increase arises from thermodynamically driven increases in water vapor, with a smaller contribution by increased zonal wind strength. These findings imply substantial challenges for water and flood management in California, given future increases in intense atmospheric river-induced precipitation extremes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom