z-logo
open-access-imgOpen Access
Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy
Author(s) -
Chanho Lee,
George Kim,
Yi Chou,
Brianna L. Musicó,
Michael C. Gao,
Ke An,
Gian Song,
YiChia Chou,
V. Keppens,
Wei Chen,
Peter K. Liaw
Publication year - 2020
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaz4748
Subject(s) - alloy , materials science , high entropy alloys , refractory (planetary science) , deformation (meteorology) , composite material , severe plastic deformation , metallurgy , thermodynamics , physics
Single-phase solid-solution refractory high-entropy alloys (HEAs) show remarkable mechanical properties, such as their high yield strength and substantial softening resistance at elevated temperatures. Hence, the in-depth study of the deformation behavior for body-centered cubic (BCC) refractory HEAs is a critical issue to explore the uncovered/unique deformation mechanisms. We have investigated the elastic and plastic deformation behaviors of a single BCC NbTaTiV refractory HEA at elevated temperatures using integrated experimental efforts and theoretical calculations. The in situ neutron diffraction results reveal a temperature-dependent elastic anisotropic deformation behavior. The single-crystal elastic moduli and macroscopic Young's, shear, and bulk moduli were determined from the in situ neutron diffraction, showing great agreement with first-principles calculations, machine learning, and resonant ultrasound spectroscopy results. Furthermore, the edge dislocation-dominant plastic deformation behaviors, which are different from conventional BCC alloys, were quantitatively described by the Williamson-Hall plot profile modeling and high-angle annular dark-field scanning transmission electron microscopy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom