Compression of dynamic tactile information in the human hand
Author(s) -
Yitian Shao,
Vincent Hayward,
Yon Visell
Publication year - 2020
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaz1158
Subject(s) - tactile sensor , encoding (memory) , tactile perception , computer science , perception , computation , compression (physics) , artificial intelligence , human–computer interaction , neuroscience , physics , biology , algorithm , robot , thermodynamics
A key problem in the study of the senses is to describe how sense organs extract perceptual information from the physics of the environment. We previously observed that dynamic touch elicits mechanical waves that propagate throughout the hand. Here, we show that these waves produce an efficient encoding of tactile information. The computation of an optimal encoding of thousands of naturally occurring tactile stimuli yielded a compact lexicon of primitive wave patterns that sparsely represented the entire dataset, enabling touch interactions to be classified with an accuracy exceeding 95%. The primitive tactile patterns reflected the interplay of hand anatomy with wave physics. Notably, similar patterns emerged when we applied efficient encoding criteria to spiking data from populations of simulated tactile afferents. This finding suggests that the biomechanics of the hand enables efficient perceptual processing by effecting a preneuronal compression of tactile information.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom