z-logo
open-access-imgOpen Access
3D-printed automation for optimized PET radiochemistry
Author(s) -
Alejandro AmorCoarasa,
James M. Kelly,
John W. Babich
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aax4762
Subject(s) - automation , robotics , computer science , artificial intelligence , laboratory automation , embedded system , engineering , robot , mechanical engineering
Reproducible batch synthesis of radioligands for imaging by positron emission tomography (PET) in a manner that maximizes ligand yield, purity, and molar activity, and minimizes cost and exposure to radiation, remains a challenge, as new and synthetically complex radioligands become available. Commercially available automated synthesis units (ASUs) solve many of these challenges but are costly to install and cannot always accommodate diverse chemistries. Through a reiterative design process, we exploit the proliferation of three-dimensional (3D) printing technologies to translate optimized reaction conditions into ASUs composed of 3D-printed, electronic, and robotic parts. Our units are portable and robust and reduce radiation exposure, shorten synthesis time, and improve the yield of the final radiopharmaceutical for a fraction of the cost of a commercial ASU. These 3D-printed ASUs highlight the gains that can be made by designing a fit-for-purpose ASU to accommodate a synthesis over accommodating a synthesis to an unfit ASU.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom