Generation of multiple ultrastable optical frequency combs from an all-fiber photonic platform
Author(s) -
Dohyeon Kwon,
Igju Jeon,
Won-Kyu Lee,
Myoung-Sun Heo,
Jungwon Kim
Publication year - 2020
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aax4457
Subject(s) - optical fiber , fiber laser , photonics , optics , photonic crystal fiber , optical frequency comb , optoelectronics , laser , materials science , frequency comb , physics
Frequency-stabilized optical frequency combs have created many high-precision applications. Accurate timing, ultralow phase noise, and narrow linewidth are prerequisites for achieving the ultimate performance of comb-based systems. Ultrastable cavity-based comb-noise stabilization methods have enabled sub-10-level frequency instability. However, these methods are complex and alignment sensitive, and their use has been mostly confined to advanced metrology laboratories. Here, we have established a simple, compact, alignment-free, and potentially low-cost all-fiber photonics-based stabilization method for generating multiple ultrastable combs. The achieved performance includes 1-femtosecond timing jitter, few times 10-level frequency instability, and <5-hertz linewidth, rivalling those of cavity-stabilized combs. This method features flexibility in configuration: As a representative example, two combs were stabilized with 180-hertz repetition rate difference and ~1-hertz relative linewidth and could be used as an ultrastable, octave-spanning dual-comb spectroscopy source. The demonstrated method constitutes a mechanically robust and reconfigurable tool for generating multiple ultrastable combs suitable for field applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom