z-logo
open-access-imgOpen Access
3D steerable, acoustically powered microswimmers for single-particle manipulation
Author(s) -
Liqiang Ren,
Nitesh Nama,
Jeffrey M. McNeill,
Fernando Soto,
Zhifei Yan,
Wu Liu,
Wei Wang,
Joseph Wang,
Thomas E. Mallouk
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aax3084
Subject(s) - particle (ecology) , nanotechnology , computer science , physics , materials science , biology , ecology
The ability to precisely maneuver micro/nano objects in fluids in a contactless, biocompatible manner can enable innovative technologies and may have far-reaching impact in fields such as biology, chemical engineering, and nanotechnology. Here, we report a design for acoustically powered bubble-based microswimmers that are capable of autonomous motion in three dimensions and selectively transporting individual synthetic colloids and mammalian cells in a crowded group without labeling, surface modification, or effect on nearby objects. In contrast to previously reported microswimmers, their motion does not require operation at acoustic pressure nodes, enabling propulsion at low power and far from an ultrasonic transducer. In a megahertz acoustic field, the microswimmers are subject to two predominant forces: the secondary Bjerknes force and a locally generated acoustic streaming propulsive force. The combination of these two forces enables the microswimmers to independently swim on three dimensional boundaries or in free space under magnetical steering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom