z-logo
open-access-imgOpen Access
Formation of exoplanetary satellites by pull-down capture
Author(s) -
Bradley M. S. Hansen
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaw8665
Subject(s) - astrobiology , computer science , exoplanet , astronomy , physics , computer vision , stars
The large size and wide orbit of the recently announced exomoon candidate Kepler-1625b-i are hard to explain within traditional theories of satellite formation. We show that these properties can be reproduced if the satellite began as a circumstellar co-orbital body with the original core of the giant planet Kepler-1625b. This body was then drawn down into a circumplanetary orbit during the rapid accretion of the giant planet gaseous envelope, a process termed "pull-down capture." Our numerical integrations demonstrate the stability of the original configuration and the capture process. In this model, the exomoon Kepler-1625b-i is the protocore of a giant planet that never accreted a substantial gas envelope. Different initial conditions can give rise to capture into other co-orbital configurations, motivating the search for Trojan-like companions to this and other giant planets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom