z-logo
open-access-imgOpen Access
Transport of a graphene nanosheet sandwiched inside cell membranes
Author(s) -
Pengyu Chen,
Hua Yue,
Xiaobo Zhai,
Zihan Huang,
Guanghui Ma,
Wei Wei,
LiTang Yan
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaw3192
Subject(s) - graphene , membrane , nanosheet , nanotechnology , nanomaterials , materials science , brownian dynamics , nanoparticle , drug delivery , brownian motion , biophysics , chemistry , physics , biochemistry , biology , quantum mechanics
The transport of nanoparticles at bio-nano interfaces is essential for many cellular responses and biomedical applications. How two-dimensional nanomaterials, such as graphene and transition-metal dichalcogenides, diffuse along the cell membrane is, however, unknown, posing an urgent and important issue to promote their applications in the biomedical area. Here, we show that the transport of graphene oxides (GOs) sandwiched inside cell membranes varies from Brownian to Lévy and even directional dynamics. Specifically, experiments evidence sandwiched graphene-cell membrane superstructures in different cells. Combined simulations and analysis identify a sandwiched GO-induced pore in cell membrane leaflets, spanning unstable, metastable, and stable states. An analytical model that rationalizes the regimes of these membrane-pore states fits simulations quantitatively, resulting in a mechanistic interpretation of the emergence of Lévy and directional dynamics. We finally demonstrate the applicability of sandwiched GOs in enhanced efficiency of membrane-specific drug delivery. Our findings inform approaches to programming intramembrane transport of two-dimensional nanomaterials toward advantageous biomedical applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom