z-logo
open-access-imgOpen Access
A unified picture of the covalent bond within quantum-accurate force fields: From organic molecules to metallic complexes’ reactivity
Author(s) -
Alessandro Lunghi,
Stefano Sanvito
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaw2210
Subject(s) - covalent bond , force field (fiction) , representation (politics) , statistical physics , chemical bond , molecule , field (mathematics) , chemical physics , computer science , potential energy surface , computational chemistry , theoretical physics , physics , chemistry , quantum mechanics , mathematics , politics , political science , pure mathematics , law
Computational studies of chemical processes taking place over extended size and time scales are inaccessible by electronic structure theories and can be tackled only by atomistic models such as force fields. These have evolved over the years to describe the most diverse systems. However, as we improve the performance of a force field for a particular physical/chemical situation, we are also moving away from a unified description. Here, we demonstrate that a unified picture of the covalent bond is achievable within the framework of machine learning-based force fields. Ridge regression, together with a representation of the atomic environment in terms of bispectrum components, can be used to map a general potential energy surface for molecular systems at chemical accuracy. This protocol sets the ground for the generation of an accurate and universal class of potentials for both organic and organometallic compounds with no specific assumptions on the chemistry involved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom