Deformation of an inner valence molecular orbital in ethanol by an intense laser field
Author(s) -
Hiroshi Akagi,
Tomohito Otobe,
Ryuji Itakura
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaw1885
Subject(s) - valence (chemistry) , ionization , deformation (meteorology) , laser , molecular orbital , physics , atomic physics , molecular physics , materials science , molecule , optics , ion , quantum mechanics , meteorology
Valence molecular orbitals play a crucial role in chemical reactions. Here, we reveal that an intense laser field deforms an inner valence orbital (10a') in the ethanol molecule. We measure the recoil-frame photoelectron angular distribution (RFPAD), which corresponds to the orientation dependence of the ionization probability of the orbital, using photoelectron-photoion coincidence momentum imaging with a circularly polarized laser pulse. Ab initio simulations show that the orbital deformation depends strongly on the laser field direction and that the measured RFPAD cannot be reproduced without taking the orbital deformation into account. Our findings suggest that the laser-induced orbital deformation occurs before electron emission on a suboptical cycle time scale.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom