Vapor-printed polymer electrodes for long-term, on-demand health monitoring
Author(s) -
Jae Joon Kim,
Linden K. Allison,
Trisha L. Andrew
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaw0463
Subject(s) - on demand , electrode , materials science , nanotechnology , term (time) , polymer , environmental science , optoelectronics , computer science , chemistry , composite material , physics , multimedia , quantum mechanics
We vapor print conformal conjugated polymer electrodes directly onto living plants and use these electrodes to probe the health of actively growing specimens using bioimpedance spectroscopy. Vapor-printed polymer electrodes, unlike their adhesive thin-film counterparts, do not delaminate from microtextured living surfaces as the organism matures and do not observably attenuate the natural growth pattern and self-sustenance of the plants investigated here. On-demand, noninvasive bioimpedance spectroscopy performed with long-lasting vapor-printed polymer electrodes can reliably detect deep tissue damage caused by dehydration and ultraviolet A exposure throughout the life cycle of a plant.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom