z-logo
open-access-imgOpen Access
Vapor-printed polymer electrodes for long-term, on-demand health monitoring
Author(s) -
Jae Joon Kim,
Linden K. Allison,
Trisha L. Andrew
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaw0463
Subject(s) - on demand , electrode , materials science , nanotechnology , term (time) , polymer , environmental science , optoelectronics , computer science , chemistry , composite material , physics , multimedia , quantum mechanics
We vapor print conformal conjugated polymer electrodes directly onto living plants and use these electrodes to probe the health of actively growing specimens using bioimpedance spectroscopy. Vapor-printed polymer electrodes, unlike their adhesive thin-film counterparts, do not delaminate from microtextured living surfaces as the organism matures and do not observably attenuate the natural growth pattern and self-sustenance of the plants investigated here. On-demand, noninvasive bioimpedance spectroscopy performed with long-lasting vapor-printed polymer electrodes can reliably detect deep tissue damage caused by dehydration and ultraviolet A exposure throughout the life cycle of a plant.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom