z-logo
open-access-imgOpen Access
Using 3D epigenomic maps of primary olfactory neuronal cells from living individuals to understand gene regulation
Author(s) -
Suhn K. Rhie,
Shan Schreiner,
Heather Witt,
Chris Armoskus,
Fides D. Lay,
Adrian Camarena,
Valeria N. Spitsyna,
Yu Guo,
Benjamin P. Berman,
Oleg V. Evgrafov,
James A. Knowles,
Peggy Farnham
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav8550
Subject(s) - epigenomics , epigenetics , profiling (computer programming) , biology , neuroscience , olfactory system , primary (astronomy) , gene , computational biology , genetics , dna methylation , gene expression , computer science , physics , astronomy , operating system
As part of PsychENCODE, we developed a three-dimensional (3D) epigenomic map of primary cultured neuronal cells derived from olfactory neuroepithelium (CNON). We mapped topologically associating domains and high-resolution chromatin interactions using Hi-C and identified regulatory elements using chromatin immunoprecipitation and nucleosome positioning assays. Using epigenomic datasets from biopsies of 63 living individuals, we found that epigenetic marks at distal regulatory elements are more variable than marks at proximal regulatory elements. By integrating genotype and metadata, we identified enhancers that have different levels corresponding to differences in genetic variation, gender, smoking, and schizophrenia. Motif searches revealed that many CNON enhancers are bound by neuronal-related transcription factors. Last, we combined 3D epigenomic maps and gene expression profiles to predict enhancer-target gene interactions on a genome-wide scale. This study not only provides a framework for understanding individual epigenetic variation using a primary cell model system but also contributes valuable data resources for epigenomic studies of neuronal epithelium.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom