New clues to ancient water on Itokawa
Author(s) -
Ziliang Jin,
Maitrayee Bose
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav8106
Subject(s) - astrobiology , computer science , biology , paleontology , cognitive science , computational biology , psychology
We performed the first measurements of hydrogen isotopic composition and water content in nominally anhydrous minerals collected by the Hayabusa mission from the S-type asteroid Itokawa. The hydrogen isotopic composition (δD) of the measured pyroxene grains is -79 to -53‰, which is indistinguishable from that in chondritic meteorites, achondrites, and terrestrial rocks. Itokawa minerals contain water contents of 698 to 988 parts per million (ppm) weight, after correcting for water loss during parent body processes and impact events that elevated the temperature of the parent body. We infer that the Bulk Silicate Itokawa parent body originally had 160 to 510 ppm water. Asteroids like Itokawa that formed interior to the snow line could therefore have been a potential source of water (up to 0.5 Earth's oceans) during the formation of Earth and other terrestrial planets.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom