Tropical fish diversity enhances coral reef functioning across multiple scales
Author(s) -
Jonathan S. Lefcheck,
Anne A. InnesGold,
Simon J. Brandl,
Robert S. Steneck,
Rubén Torres,
Douglas B. Rasher
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav6420
Subject(s) - coral reef , coral , fish <actinopterygii> , diversity (politics) , resilience of coral reefs , coral reef fish , ecosystem , ecology , reef , coral reef protection , herbivore , fishery , environmental issues with coral reefs , aquaculture of coral , biology , sociology , anthropology
There is now a general consensus that biodiversity positively affects ecosystem functioning. This consensus, however, stems largely from small-scale experiments, raising the question of whether diversity effects operate at multiple spatial scales and flow on to affect ecosystem structure in nature. Here, we quantified rates of fish herbivory on algal turf communities across multiple coral reefs spanning >1000 km of coastline in the Dominican Republic. We show that mass-standardized herbivory rates are best predicted by herbivore biomass and herbivore species richness both within (α-diversity) and across sites in the region (β-diversity). Using species-diversity models, we demonstrate that many common grazer species are necessary to maximize the process of herbivory. Last, we link higher herbivory rates to reduced algal turf height and enhanced juvenile coral recruitment throughout the ecosystem. Our results suggest that, in addition to high herbivore biomass, conserving biodiversity at multiple scales is important for sustaining coral reef function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom