Triggered reversible substitution of adaptive constitutional dynamic networks dictates programmed catalytic functions
Author(s) -
Liang Yue,
Shan Wang,
Itamar Willner
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav5564
Subject(s) - substitution (logic) , nucleic acid , computer science , biological system , chemistry , computational biology , biology , biochemistry , programming language
The triggered substitution of networks and their resulting functions play an important mechanism in biological transformations, such as intracellular metabolic pathways and cell differentiation. We describe the triggered, cyclic, reversible intersubstitution of three nucleic acid-based constitutional dynamic networks (CDNs) and the programmed catalytic functions guided by the interconverting CDNs. The transitions between the CDNs are activated by nucleic acid strand displacement processes acting as triggers and counter triggers, leading to the adaptive substitution of the constituents and to emerging catalytic functions dictated by the compositions of the different networks. The quantitative evaluation of the compositions of the different CDNs is achieved by DNAzyme reporters and complementary electrophoresis experiments. By coupling a library of six hairpins to the interconverting CDNs, the CDN-guided, emerging, programmed activities of three different biocatalysts are demonstrated. The study has important future applications in the development of sensor systems, finite-state logic devices, and selective switchable catalytic assemblies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom