z-logo
open-access-imgOpen Access
Making flexible spin caloritronic devices with interconnected nanowire networks
Author(s) -
Tristan da Câmara Santa Clara Gomes,
Flavio Abreu Araujo,
L. Piraux
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav2782
Subject(s) - nanowire , computer science , spin (aerodynamics) , nanotechnology , distributed computing , materials science , physics , thermodynamics
Spin caloritronics has recently emerged from the combination of spintronics and thermoelectricity. Here, we show that flexible, macroscopic spin caloritronic devices based on large-area interconnected magnetic nanowire networks can be used to enable controlled Peltier cooling of macroscopic electronic components with an external magnetic field. We experimentally demonstrate that three-dimensional CoNi/Cu multilayered nanowire networks exhibit an extremely high, magnetically modulated thermoelectric power factor up to 7.5 mW/Km and large spin-dependent Seebeck and Peltier coefficients of -11.5 μV/K and -3.45 mV at room temperature, respectively. Our investigation reveals the possibility of performing efficient magnetic control of heat flux for thermal management of electronic devices and constitutes a simple and cost-effective pathway for fabrication of large-scale flexible and shapeable thermoelectric coolers exploiting the spin degree of freedom.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom