z-logo
open-access-imgOpen Access
Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations
Author(s) -
DongJu Shin,
Wookjae Lee,
Ji Hyun Lee,
Duhee Bang
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav2249
Subject(s) - computational biology , rna , dna , profiling (computer programming) , gene expression profiling , cell , single cell analysis , multiplexing , biology , rna seq , microbiology and biotechnology , computer science , gene expression , gene , genetics , transcriptome , telecommunications , operating system
The development of high-throughput single-cell RNA sequencing (scRNA-seq) has enabled access to information about gene expression in individual cells and insights into new biological areas. Although the interest in scRNA-seq has rapidly grown in recent years, the existing methods are plagued by many challenges when performing scRNA-seq on multiple samples. To simultaneously analyze multiple samples with scRNA-seq, we developed a universal sample barcoding method through transient transfection with short barcode oligonucleotides. By conducting a species-mixing experiment, we have validated the accuracy of our method and confirmed the ability to identify multiplets and negatives. Samples from a 48-plex drug treatment experiment were pooled and analyzed by a single run of Drop-Seq. This revealed unique transcriptome responses for each drug and target-specific gene expression signatures at the single-cell level. Our cost-effective method is widely applicable for the single-cell profiling of multiple experimental conditions, enabling the widespread adoption of scRNA-seq for various applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom