z-logo
open-access-imgOpen Access
SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair
Author(s) -
Ming Tang,
Zhiming Li,
Chaohua Zhang,
Xiaopeng Lu,
Bo Tu,
Ziyang Cao,
Yinglu Li,
Yongcan Chen,
Lu Jiang,
Hui Wang,
Lina Wang,
Jiadong Wang,
Baohua Liu,
Xingzhi Xu,
Haiying Wang,
WeiGuo Zhu
Publication year - 2019
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aav1118
Subject(s) - dna damage , acetylation , dna repair , dna damage repair , dna , chemistry , biochemistry , gene
The activation of ataxia-telangiectasia mutated (ATM) upon DNA damage involves a cascade of reactions, including acetylation by TIP60 and autophosphorylation. However, how ATM is progressively deactivated after completing DNA damage repair remains obscure. Here, we report that sirtuin 7 (SIRT7)–mediated deacetylation is essential for dephosphorylation and deactivation of ATM. We show that SIRT7, a class III histone deacetylase, interacts with and deacetylates ATM in vitro and in vivo. In response to DNA damage, SIRT7 is mobilized onto chromatin and deacetylates ATM during the late stages of DNA damage response, when ATM is being gradually deactivated. Deacetylation of ATM by SIRT7 is prerequisite for its dephosphorylation by its phosphatase WIP1. Consequently, depletion of SIRT7 or acetylation-mimic mutation of ATM induces persistent ATM phosphorylation and activation, thus leading to impaired DNA damage repair. Together, our findings reveal a previously unidentified role of SIRT7 in regulating ATM activity and DNA damage repair. Copyright © 2019 The Authors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom