z-logo
open-access-imgOpen Access
Glacial changes in tropical climate amplified by the Indian Ocean
Author(s) -
Pedro DiNezio,
Jessica E. Tierney,
Bette L. OttoBliesner,
Axel Timmermann,
Tripti Bhattacharya,
Nan Rosenbloom,
Esther C. Brady
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aat9658
Subject(s) - glacial period , tropical climate , climatology , tropical marine climate , indian ocean , tropics , climate change , environmental science , oceanography , geology , biology , ecology , paleontology
The mechanisms driving glacial-interglacial changes in the climate of the Indo-Pacific warm pool are poorly understood. Here, we address this question by combining paleoclimate proxies with model simulations of the Last Glacial Maximum climate. We find evidence of two mechanisms explaining key patterns of ocean cooling and rainfall change interpreted from proxy data. Exposure of the Sahul shelf excites a positive ocean-atmosphere feedback involving a stronger surface temperature gradient along the equatorial Indian Ocean and a weaker Walker circulation-a response explaining the drier/wetter dipole across the basin. Northern Hemisphere cooling by ice sheet albedo drives a monsoonal retreat across Africa and the Arabian Peninsula-a response that triggers a weakening of the Indian monsoon via cooling of the Arabian Sea and associated reductions in moisture supply. These results demonstrate the importance of air-sea interactions in the Indian Ocean, amplifying externally forced climate changes over a large part of the tropics.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom