Facile profiling of molecular heterogeneity by microfluidic digital melt
Author(s) -
Christine M. O’Keefe,
Thomas R. Pisanic,
Helena C. Zec,
Michael J. Overman,
James G. Herman,
TzaHuei Wang
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aat6459
Subject(s) - epigenetics , dna methylation , biology , computational biology , dna , digital polymerase chain reaction , microfluidics , gene , genetics , materials science , nanotechnology , polymerase chain reaction , gene expression
This work presents a digital microfluidic platform called HYPER-Melt (high-density profiling and enumeration by melt) for highly parallelized copy-by-copy DNA molecular profiling. HYPER-Melt provides a facile means of detecting and assessing sequence variations of thousands of individual DNA molecules through digitization in a nanowell microchip array, allowing amplification and interrogation of individual template molecules by detecting HRM fluorescence changes due to sequence-dependent denaturation. As a model application, HYPER-Melt is used here for the detection and assessment of intermolecular heterogeneity of DNA methylation within the promoters of classical tumor suppressor genes. The capabilities of this platform are validated through serial dilutions of mixed epialleles, with demonstrated detection limits as low as 1 methylated variant in 2 million unmethylated templates (0.00005%) of a classic tumor suppressor gene, (p14). The clinical potential of the platform is demonstrated using a digital assay for , a tumor suppressor gene that is commonly methylated in colorectal cancer, in liquid biopsies of healthy and colorectal cancer patients. Overall, the platform provides the depth of information, simplicity of use, and single-molecule sensitivity necessary for rapid assessment of intermolecular variation contributing to genetic and epigenetic heterogeneity for challenging applications in embryogenesis, carcinogenesis, and rare biomarker detection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom