A swarm of slippery micropropellers penetrates the vitreous body of the eye
Author(s) -
Zhiguang Wu,
Jonas Troll,
HyeonHo Jeong,
Qiang Wei,
Marius Stang,
Focke Ziemssen,
Zegao Wang,
Mingdong Dong,
Sven Schnichels,
Tian Qiu,
Peer Fischer
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aat4388
Subject(s) - retina , penetration (warfare) , optical coherence tomography , swarm behaviour , computer science , materials science , biomedical engineering , nanotechnology , optics , physics , medicine , artificial intelligence , engineering , operations research
The intravitreal delivery of therapeutic agents promises major benefits in the field of ocular medicine. Traditional delivery methods rely on the random, passive diffusion of molecules, which do not allow for the rapid delivery of a concentrated cargo to a defined region at the posterior pole of the eye. The use of particles promises targeted delivery but faces the challenge that most tissues including the vitreous have a tight macromolecular matrix that acts as a barrier and prevents its penetration. Here, we demonstrate novel intravitreal delivery microvehicles-slippery micropropellers-that can be actively propelled through the vitreous humor to reach the retina. The propulsion is achieved by helical magnetic micropropellers that have a liquid layer coating to minimize adhesion to the surrounding biopolymeric network. The submicrometer diameter of the propellers enables the penetration of the biopolymeric network and the propulsion through the porcine vitreous body of the eye over centimeter distances. Clinical optical coherence tomography is used to monitor the movement of the propellers and confirm their arrival on the retina near the optic disc. Overcoming the adhesion forces and actively navigating a swarm of micropropellers in the dense vitreous humor promise practical applications in ophthalmology.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom