z-logo
open-access-imgOpen Access
An ion redistributor for dendrite-free lithium metal anodes
Author(s) -
ChenZi Zhao,
Pengyu Chen,
Rui Zhang,
Xiang Chen,
BoQuan Li,
XueQiang Zhang,
XinBing Cheng,
Qiang Zhang
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aat3446
Subject(s) - anode , separator (oil production) , materials science , faraday efficiency , gravimetric analysis , ion , alkali metal , chemical engineering , lithium (medication) , metal , nanotechnology , chemistry , electrode , metallurgy , medicine , physics , organic chemistry , endocrinology , thermodynamics , engineering
Lithium (Li) metal anodes have attracted considerable interest due to their ultrahigh theoretical gravimetric capacity and very low redox potential. However, the issues of nonuniform lithium deposits (dendritic Li) during cycling are hindering the practical applications of Li metal batteries. Herein, we propose a concept of ion redistributors to eliminate dendrites by redistributing Li ions with Al-doped LiLaZrTaO (LLZTO) coated polypropylene (PP) separators. The LLZTO with three-dimensional ion channels can act as a redistributor to regulate the movement of Li ions, delivering a uniform Li ion distribution for dendrite-free Li deposition. The standard deviation of ion concentration beneath the LLZTO composite separator is 13 times less than that beneath the routine PP separator. A Coulombic efficiency larger than 98% over 450 cycles is achieved in a Li | Cu cell with the LLZTO-coated separator. This approach enables a high specific capacity of 140 mAh g for LiFePO | Li pouch cells and prolonged cycle life span of 800 hours for Li | Li pouch cells, respectively. This strategy is facile and efficient in regulating Li-ion deposition by separator modifications and is a universal method to protect alkali metal anodes in rechargeable batteries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom