z-logo
open-access-imgOpen Access
The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion
Author(s) -
Churong Ma,
Jiahao Yan,
Yingcong Huang,
Chengxin Wang,
Guowei Yang
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aas9894
Subject(s) - photothermal therapy , tellurium , broadband , nanoparticle , duality (order theory) , solar energy , solar energy conversion , energy harvesting , materials science , optoelectronics , physics , nanotechnology , energy (signal processing) , optics , mathematics , engineering , quantum mechanics , electrical engineering , discrete mathematics , metallurgy
Nanophotonic materials for solar energy harvesting and photothermal conversion are urgently needed to alleviate the global energy crisis. We demonstrate that a broadband absorber made of tellurium (Te) nanoparticles with a wide size distribution can absorb more than 85% solar radiation in the entire spectrum. Temperature of the absorber irradiated by sunlight can increase from 29° to 85°C within 100 s. By dispersing Te nanoparticles into water, the water evaporation rate is improved by three times under solar radiation of 78.9 mW/cm. This photothermal conversion surpasses that of plasmonic or all-dielectric nanoparticles reported before. We also establish that the unique permittivity of Te is responsible for the high performance. The real part of permittivity experiences a transition from negative to positive in the ultraviolet-visible-near-infrared region, which endows Te nanoparticles with the plasmonic-like and all-dielectric duality. The total absorption covers the entire spectrum of solar radiation due to the enhancement by both plasmonic-like and Mie-type resonances. It is the first reported material that simultaneously has plasmonic-like and all-dielectric properties in the solar radiation region. These findings suggest that the Te nanoparticle can be expected to be an advanced photothermal conversion material for solar-enabled water evaporation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom