Subsurface catalysis-mediated selectivity of dehydrogenation reaction
Author(s) -
Weiting Cai,
Rentao Mu,
Shenjun Zha,
Guodong Sun,
Sai Chen,
ZhiJian Zhao,
Hao Li,
Hao Tian,
Yu Tang,
Franklin Tao,
Liang Zeng,
Jinlong Gong
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aar5418
Subject(s) - dehydrogenation , selectivity , catalysis , propane , chemistry , chemical engineering , inorganic chemistry , photochemistry , organic chemistry , engineering
Progress in heterogeneous catalysis is often hampered by the difficulties of constructing active architectures and understanding reaction mechanisms at the molecular level due to the structural complexity of practical catalysts, in particular for multicomponent catalysts. Although surface science experiments and theoretical simulations help understand the detailed reaction mechanisms over model systems, the direct study of the nature of nanoparticle catalysts remains a grand challenge. This paper describes a facile construction of well-defined Pt-skin catalysts modified by different 3d transition metal (3dTM) atoms in subsurface regions. However, on the catalyst containing both surface and subsurface 3dTMs, the selectivity of propane dehydrogenation decreases in the sequences of Pt ~ PtFe > PtCo > PtNi due to the easier C-C cracking on exposed Co and Ni sites. After the exposed 3dTMs were removed completely, the CH selectivity was found to increase markedly in the row Pt < PtNi@Pt < PtCo@Pt < PtFe@Pt, which is in line with the calculated trend of d-band center shifting. The established relationship between reactivity and d-band center shifting illustrates the role of subsurface catalysis in dehydrogenation reaction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom