Evaluating biological activity of compounds by transcription factor activity profiling
Author(s) -
Alexander V. Medvedev,
Matt Moeser,
Liubov Medvedeva,
Elena Martsen,
Alexander Granick,
Lydia Raines,
Ming Zeng,
Sergei Makarov,
Keith A. Houck,
Sergei S. Makarov
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aar4666
Subject(s) - profiling (computer programming) , transcription factor , computational biology , biology , bioinformatics , computer science , genetics , gene , operating system
Assessing the biological activity of compounds is an essential objective of biomedical research. We show that one can infer the bioactivity of compounds by assessing the activity of transcription factors (TFs) that regulate gene expression. Using a multiplex reporter system, the FACTORIAL, we characterized cell response to a compound by a quantitative signature, the TF activity profile (TFAP). We found that perturbagens of biological pathways elicited distinct TFAP signatures in human cells. Unexpectedly, perturbagens of the same pathway all produced identical TFAPs, regardless of where or how they interfered. We found invariant TFAPs for mitochondrial, histone deacetylase, and ubiquitin/proteasome pathway inhibitors; cytoskeleton disruptors; and DNA-damaging agents. Using these invariant signatures permitted straightforward identification of compounds with specified bioactivities among uncharacterized chemicals. Furthermore, this approach allowed us to assess the multiple bioactivities of polypharmacological drugs. Thus, TF activity profiling affords straightforward assessment of the bioactivity of compounds through the identification of perturbed biological pathways.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom