Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach
Author(s) -
Hiang Kwee Lee,
Charlynn Sher Lin Koh,
Yih Hong Lee,
Chong Liu,
In Yee Phang,
Xuemei Han,
ChiaKuang Tsung,
Xing Yi Ling
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aar3208
Subject(s) - reticular connective tissue , electrochemistry , nitrogen fixation , nitrogen , chemistry , fixation (population genetics) , environmental chemistry , electrode , biology , biochemistry , anatomy , organic chemistry , gene
Electrochemical nitrogen-to-ammonia fixation is emerging as a sustainable strategy to tackle the hydrogen- and energy-intensive operations by Haber-Bosch process for ammonia production. However, current electrochemical nitrogen reduction reaction (NRR) progress is impeded by overwhelming competition from the hydrogen evolution reaction (HER) across all traditional NRR catalysts and the requirement for elevated temperature/pressure. We achieve both excellent NRR selectivity (~90%) and a significant boost to Faradic efficiency by 10 percentage points even at ambient operations by coating a superhydrophobic metal-organic framework (MOF) layer over the NRR electrocatalyst. Our reticular chemistry approach exploits MOF's water-repelling and molecular-concentrating effects to overcome HER-imposed bottlenecks, uncovering the unprecedented electrochemical features of NRR critical for future theoretical studies. By favoring the originally unfavored NRR, we envisage our electrocatalytic design as a starting point for high-performance nitrogen-to-ammonia electroconversion directly from water vapor-abundant air to address increasing global demand of ammonia in (bio)chemical and energy industries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom