z-logo
open-access-imgOpen Access
Bursting at the seams: Rippled monolayer bismuth on NbSe 2
Author(s) -
Alan Fang,
Carolina Adamo,
Shuang Jia,
R. J. Cava,
Shu-Chun Wu,
Claudia Felser,
A. Kapitulnik
Publication year - 2018
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aaq0330
Subject(s) - bismuth , monolayer , condensed matter physics , bursting , materials science , domain (mathematical analysis) , nanotechnology , physics , psychology , metallurgy , mathematics , neuroscience , mathematical analysis
Bismuth, one of the heaviest semimetals in nature, ignited the interest of the materials physics community for its potential impact on topological quantum material systems that use its strong spin-orbit coupling and unique orbital hybridization. In particular, recent theoretical predictions of unique topological and superconducting properties of thin bismuth films and interfaces prompted intense research on the growth of submonolayers to a few monolayers of bismuth on different substrates. Similar to bulk rhombohedral bismuth, the initial growth of bismuth films on most substrates results in buckled bilayers that grow in either the (111) or (110) directions, with a lattice constant close to that of bulk Bi. By contrast, we show a new growth pattern for bismuth monolayers on NbSe. We find that the initial growth of Bi can form a strongly bonded commensurate layer, resulting in a compressively strained two-dimensional (2D) triangular lattice. We also observed unique pattern of 1D ripples and domain walls is observed. The single layer of bismuth also introduces strong marks on the electronic properties at the surface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom