z-logo
open-access-imgOpen Access
Biomass recycling and Earth’s early phosphorus cycle
Author(s) -
Michael A. Kipp,
Eva E. Stüeken
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.aao4795
Subject(s) - biosphere , phosphorus , biomass (ecology) , environmental science , scarcity , earth (classical element) , natural resource economics , nutrient , environmental chemistry , environmental protection , ecology , chemistry , biology , economics , organic chemistry , physics , mathematical physics , microeconomics
Phosphorus sets the pace of marine biological productivity on geological time scales. Recent estimates of Precambrian phosphorus levels suggest a severe deficit of this macronutrient, with the depletion attributed to scavenging by iron minerals. We propose that the size of the marine phosphorus reservoir was instead constrained by muted liberation of phosphorus during the remineralization of biomass. In the modern ocean, most biomass-bound phosphorus gets aerobically recycled; but a dearth of oxidizing power in Earth's early oceans would have limited the stoichiometric capacity for remineralization, particularly during the Archean. The resulting low phosphorus concentrations would have substantially hampered primary productivity, contributing to the delayed rise of atmospheric oxygen.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom