Stratified ubiquitination of RIG-I creates robust immune response and induces selective gene expression
Author(s) -
Huifang Xian,
Weihong Xie,
Shuai Yang,
Qingxiang Liu,
Xiaojun Xia,
Shouheng Jin,
Tingzhe Sun,
Jun Cui
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1701764
Subject(s) - ubiquitin , immune system , gene expression , gene , biology , rig i , microbiology and biotechnology , computational biology , genetics , innate immune system
The activation of retinoic acid-inducible gene I (RIG-I), an indispensable viral RNA sensor in mammals, is subtly regulated by ubiquitination. Although multiple ubiquitination sites at the amino terminus of RIG-I have been identified, their functional allocations in RIG-I activation remain elusive. We identified a stratified model for RIG-I amino-terminal ubiquitination, in which initiation at either Lys(164) or Lys(172) allows subsequent ubiquitination at other lysines, to trigger and amplify RIG-I activation. Experimental and mathematical modeling showed that multisite ubiquitination provides robustness in RIG-I-mediated type I interferon (IFN) signaling. Furthermore, the flexibly controlled ultrasensitivity and IFN activation intensity determine the specificity of the IFN-stimulated gene transcription and manipulate cell fate in antiviral immune response. Our work demonstrates that tunable type I IFN signaling can be regulated through multisite RIG-I ubiquitination and elucidates a new paradigm for dynamic regulation in RIG-I-mediated antiviral signaling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom