z-logo
open-access-imgOpen Access
Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly
Author(s) -
Fuchuan Ding,
Jingjing Liu,
Songshan Zeng,
Yan Xia,
Kacie M. Wells,
MuPing Nieh,
Luyi Sun
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1701212
Subject(s) - fire retardant , materials science , nanotechnology , composite material
Large-scale biomimetic organic/inorganic hybrid nanocoatings with a nacre-like microstructure were prepared via a facile coassembly process. Different from conventional polymer nanocomposites, these nanocoatings contain a high concentration of nanosheets, which can be well aligned along the substrate surface. Moreover, the nanosheets and polymer matrix can be chemically co–cross-linked. As a result, the nanocoatings exhibit exceptional mechanical properties (high stiffness and strength), barrier properties (to both oxygen and water vapor), and flame retardancy, but they are also highly transparent (maintaining more than 85% of their original transmittance to visible light). The nanocoatings can be applied to various substrates and regular or irregular surfaces (for example, films and foams). Because of their excellent performance and high versatility, these nanocoatings are expected to find widespread application.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom