Classical strong metal–support interactions between gold nanoparticles and titanium dioxide
Author(s) -
Hailian Tang,
Yang Su,
Bingsen Zhang,
Adam F. Lee,
Mark A. Isaacs,
Karen Wilson,
Lin Li,
Yuegong Ren,
Jiahui Huang,
Masatake Haruta,
Botao Qiao,
Xin Liu,
Changzi Jin,
Dangsheng Su,
Junhu Wang,
Tao Zhang
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1700231
Subject(s) - titanium dioxide , nanoparticle , metal , colloidal gold , titanium , nanotechnology , materials science , metallurgy
Supported metal catalysts play a central role in the modern chemical industry but often exhibit poor on-stream stability. The strong metal-support interaction (SMSI) offers a route to control the structural properties of supported metals and, hence, their reactivity and stability. Conventional wisdom holds that supported Au cannot manifest a classical SMSI, which is characterized by reversible metal encapsulation by the support upon high-temperature redox treatments. We demonstrate a classical SMSI for Au/TiO2, evidenced by suppression of CO adsorption, electron transfer from TiO2 to Au nanoparticles, and gold encapsulation by a TiO x overlayer following high-temperature reduction (reversed by subsequent oxidation), akin to that observed for titania-supported platinum group metals. In the SMSI state, Au/TiO2 exhibits markedly improved stability toward CO oxidation. The SMSI extends to Au supported over other reducible oxides (Fe3O4 and CeO2) and other group IB metals (Cu and Ag) over titania. This discovery highlights the general nature of the classical SMSI and unlocks the development of thermochemically stable IB metal catalysts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom