z-logo
open-access-imgOpen Access
Carbon dots in zeolites: A new class of thermally activated delayed fluorescence materials with ultralong lifetimes
Author(s) -
Jiancong Liu,
Ning Wang,
Yue Yu,
Yan Yan,
Hongyue Zhang,
Jiyang Li,
Jihong Yu
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1603171
Subject(s) - fluorescence , carbon fibers , materials science , activated carbon , class (philosophy) , nanotechnology , chemical engineering , chemistry , composite material , computer science , organic chemistry , optics , physics , composite number , adsorption , engineering , artificial intelligence
Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperature and atmosphere. This intriguing TADF phenomenon is due to the fact that nanoconfined space of zeolites can efficiently stabilize the triplet states of CDs, thus enabling the reverse intersystem crossing process for TADF. Meanwhile, zeolite frameworks can also hinder oxygen quenching to present TADF behavior at air atmosphere. This design concept introduces a new perspective to develop materials with unique TADF performance and various novel delayed fluorescence–based applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom