z-logo
open-access-imgOpen Access
Atomically engineered electron spin lifetimes of 30 s in silicon
Author(s) -
Thomas F. Watson,
Bent Weber,
YuLing Hsueh,
Lloyd C. L. Hollenberg,
Rajib Rahman,
M. Y. Simmons
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1602811
Subject(s) - qubit , quantum computer , spin (aerodynamics) , physics , electron , spin engineering , quantum mechanics , quantum , spin polarization , thermodynamics
Scaling up to large arrays of donor-based spin qubits for quantum computation will require the ability to perform high-fidelity readout of multiple individual spin qubits. Recent experiments have shown that the limiting factor for high-fidelity readout of many qubits is the lifetime of the electron spin. We demonstrate the longest reported lifetimes (up to 30 s) of any electron spin qubit in a nanoelectronic device. By atomic-level engineering of the electron wave function within phosphorus atom quantum dots, we can minimize spin relaxation in agreement with recent theoretical predictions. These lifetimes allow us to demonstrate the sequential readout of two electron spin qubits with fidelities as high as 99.8%, which is above the surface code fault-tolerant threshold. This work paves the way for future experiments on multiqubit systems using donors in silicon.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom