z-logo
open-access-imgOpen Access
Breakdown of Hooke’s law of elasticity at the Mott critical endpoint in an organic conductor
Author(s) -
Elena Gati,
Markus Garst,
R.S. Manna,
Ulrich Tutsch,
B. Wolf,
Lorenz Bartosch,
Harald Schubert,
T. Sasaki,
John A. Schlueter,
Michael Lang
Publication year - 2016
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1601646
Subject(s) - conductor , hooke's law , elasticity (physics) , materials science , condensed matter physics , physics , classical mechanics , composite material
The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes ΔL/L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of ΔL/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke’s law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom