z-logo
open-access-imgOpen Access
“Uphill” cation transport: A bioinspired photo-driven ion pump
Author(s) -
Zhen Zhang,
XiangYu Kong,
Ganhua Xie,
Pei Li,
Kai Xiao,
Liping Wen,
Lei Jiang
Publication year - 2016
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1600689
Subject(s) - ion transporter , ion , ion pump , process (computing) , nanotechnology , materials science , computer science , physics , quantum mechanics , operating system
Biological ion pumps with active ionic transport properties lay the foundation for many life processes. However, few analogs have been produced because extra energy is needed to couple to this “uphill” process. We demonstrate a bioinspired artificial photo-driven ion pump based on a single polyethylene terephthalate conical nanochannel. The pumping process behaving as an inversion of zero-volt current can be realized by applying ultraviolet irradiation from the large opening. The light energy can accelerate the dissociation of the benzoic acid derivative dimers existing on the inner surface of nanochannel, which consequently produces more mobile carboxyl groups. Enhanced electrostatic interaction between the ions traversing the nanochannel and the charged groups on the inner wall is the key reason for the uphill cation transport behavior. This system creates an ideal experimental and theoretical platform for further development and design of various stimuli-driven and specific ion–selective bioinspired ion pumps, which anticipates wide potential applications in biosensing, energy conversion, and desalination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom