z-logo
open-access-imgOpen Access
Octahedral palladium nanoparticles as excellent hosts for electrochemically adsorbed and absorbed hydrogen
Author(s) -
Anna Zalineeva,
Stève Baranton,
Christophe Coutanceau,
Gregory Jerkiewicz
Publication year - 2017
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1600542
Subject(s) - palladium , nanoparticle , adsorption , materials science , hydrogen , octahedron , chemical engineering , core (optical fiber) , nanotechnology , inorganic chemistry , chemistry , crystallography , composite material , catalysis , crystal structure , organic chemistry , engineering
We report new results for electrochemical H adsorption on and absorption in octahedral palladium nanoparticles (Pd-NPs) with an average tip-to-tip size of 7.8 nm and a narrow size distribution. They reveal a very high H loading of 0.90 that cannot be achieved using bulk Pd materials or larger NPs; this behavior is assigned to a combination of two factors: their small size and face morphology. Temperature-dependent cyclic voltammetry (CV) studies in the range of 296 to 333 K reveal unique features that are attributed to electrochemical H adsorption, H absorption, and H2 generation. The CV features are used to prepare H adsorption and absorption isotherms that are then used in thermodynamic data analysis. Modeling of the experimental results demonstrates that, upon H adsorption and absorption, Pd-NPs develop a core-shell-skin structure, each with its unique H loading. The electrochemical results obtained for octahedral Pd-NPs are compared to analogous data obtained for cubic Pd-NPs with a similar size as well as for larger cubic Pd-NPs and bulk materials under gas-phase conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom