z-logo
open-access-imgOpen Access
The social costs of nitrogen
Author(s) -
Bonnie L. Keeler,
Jesse D. Gourevitch,
Stephen Polasky,
Forest Isbell,
Christopher W. Tessum,
Jason Hill,
Julian Marshall
Publication year - 2016
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1600219
Subject(s) - nitrogen , computer science , data science , chemistry , organic chemistry
Despite growing recognition of the negative externalities associated with reactive nitrogen (N), the damage costs of N to air, water, and climate remain largely unquantified. We propose a comprehensive approach for estimating the social cost of nitrogen (SCN), defined as the present value of the monetary damages caused by an incremental increase in N. This framework advances N accounting by considering how each form of N causes damages at specific locations as it cascades through the environment. We apply the approach to an empirical example that estimates the SCN for N applied as fertilizer. We track impacts of N through its transformation into atmospheric and aquatic pools and estimate the distribution of associated costs to affected populations. Our results confirm that there is no uniform SCN. Instead, changes in N management will result in different N-related costs depending on where N moves and the location, vulnerability, and preferences of populations affected by N. For example, we found that the SCN per kilogram of N fertilizer applied in Minnesota ranges over several orders of magnitude, from less than $0.001/kg N to greater than $10/kg N, illustrating the importance of considering the site, the form of N, and end points of interest rather than assuming a uniform cost for damages. Our approach for estimating the SCN demonstrates the potential of integrated biophysical and economic models to illuminate the costs and benefits of N and inform more strategic and efficient N management.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom