Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago
Author(s) -
Genming Luo,
Shuhei Ono,
Nicolas J. Beukes,
David T. Wang,
Shucheng Xie,
Roger E. Summons
Publication year - 2016
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1600134
Subject(s) - snowball earth , geology , biogeochemical cycle , sedimentary rock , diagenesis , geologic record , paleontology , billion years , glacial period , earth science , early earth , archean , chemostratigraphy , atmosphere (unit) , pyrite , astrobiology , geochemistry , ecology , isotopes of carbon , geography , meteorology , biology , physics , galaxy , quantum mechanics , total organic carbon
Molecular oxygen (O[subscript 2]) is, and has been, a primary driver of biological evolution and shapes the contemporary landscape of Earth’s biogeochemical cycles. Although “whiffs” of oxygen have been documented in the Archean atmosphere, substantial O2 did not accumulate irreversibly until the Early Paleoproterozoic, during what has been termed the Great Oxygenation Event (GOE). The timing of the GOE and the rate at which this oxygenation took place have been poorly constrained until now. We report the transition (that is, from being mass-independent to becoming mass-dependent) in multiple sulfur isotope signals of diagenetic pyrite in a continuous sedimentary sequence in three coeval drill cores in the Transvaal Supergroup, South Africa. These data precisely constrain the GOE to 2.33 billion years ago. The new data suggest that the oxygenation occurred rapidly—within 1 to 10 million years—and was followed by a slower rise in the ocean sulfate inventory. Our data indicate that a climate perturbation predated the GOE, whereas the relationships among GOE, “Snowball Earth” glaciation, and biogeochemical cycling will require further stratigraphic correlation supported with precise chronologies and paleolatitude reconstructions.National Science Foundation (U.S.) (EAR-1338810)National Natural Science Foundation (China) ((grant no. 41472170)Wellcome Trust Sanger Institute ( 111 Project grant no. B08030)National Basic Research Program of China (973 Program)United States. National Aeronautics and Space Administration (NASA Astrobiology Institute award NNA13AA90A
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom