There are many ways to spin a photon: Half-quantization of a total optical angular momentum
Author(s) -
K. E. Ballantine,
John F. Donegan,
P. R. Eastham
Publication year - 2016
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1501748
Subject(s) - photon , angular momentum , physics , total angular momentum quantum number , quantization (signal processing) , spin (aerodynamics) , angular momentum coupling , half integer , momentum (technical analysis) , quantum electrodynamics , quantum mechanics , mathematics , statistics , thermodynamics , finance , economics
This work was supported by the Higher Education Authority of Ireland under PRTLI (Programme for Research in Third-Level Institutions) funding cycle 5 and by Science Foundation Ireland (09/SIRG/I1592, 12/RC/2278).The angular momentum of light plays an important role in many areas, from optical trapping to quantum information. In the usual three-dimensional setting, the angular momentum quantum numbers of the photon are integers, in units of the Planck constant ħ. We show that, in reduced dimensions, photons can have a half-integer total angular momentum. We identify a new form of total angular momentum, carried by beams of light, comprising an unequal mixture of spin and orbital contributions. We demonstrate the half-integer quantization of this total angular momentum using noise measurements. We conclude that for light, as is known for electrons, reduced dimensionality allows new forms of quantization.Publisher PDFPeer reviewe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom