Boundary lubrication of heterogeneous surfaces and the onset of cavitation in frictional contacts
Author(s) -
Daniele Savio,
Lars Pastewka,
Peter Gumbsch
Publication year - 2016
Publication title -
science advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.928
H-Index - 146
ISSN - 2375-2548
DOI - 10.1126/sciadv.1501585
Subject(s) - cavitation , slipping , boundary lubrication , lubrication , mechanics , materials science , molecular dynamics , flow (mathematics) , boundary (topology) , composite material , physics , mechanical engineering , mathematical analysis , mathematics , quantum mechanics , engineering
Surfaces can be slippery or sticky depending on surface chemistry and roughness. We demonstrate in atomistic simulations that regular and random slip patterns on a surface lead to pressure excursions within a lubricated contact that increase quadratically with decreasing contact separation. This is captured well by a simple hydrodynamic model including wall slip. We predict with this model that pressure changes for larger length scales and realistic frictional conditions can easily reach cavitation thresholds and significantly change the load-bearing capacity of a contact. Cavitation may therefore be the norm, not the exception, under boundary lubrication conditions
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom