Frequency-domain nonlinearity analysis of noise from a high-performance jet aircraft
Author(s) -
Kent L. Gee,
Kyle Miller,
Brent O. Reichman,
Alan T. Wall
Publication year - 2018
Publication title -
proceedings of meetings on acoustics
Language(s) - English
Resource type - Conference proceedings
ISSN - 1939-800X
DOI - 10.1121/2.0000899
Subject(s) - jet noise , acoustics , noise (video) , jet (fluid) , physics , frequency domain , nonlinear system , shock (circulatory) , microphone , transfer function , sound pressure , mathematics , mathematical analysis , computer science , engineering , mechanics , medicine , quantum mechanics , artificial intelligence , image (mathematics) , electrical engineering
Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.Characterization of far-field jet noise spectral evolution can be performed locally with a single microphone measurement using a gain factor that stems from the ensemble-averaged, frequency-domain version of the generalized Burgers equation. The factor quantifies the nonlinear change in the sound pressure level spectrum over distance [B. O. Reichman et al., J. Acoust. Soc. Am. 139, 2505-2513 (2016)]. Here, noise waveforms from a high-performance military jet aircraft are characterized with this gain factor and compared to propagation losses from geometric spreading and atmospheric absorption. Far-field results show that the high-frequency nonlinear gains at high frequencies tend to balance the absorption losses, thus establishing the characteristic spectral slope present in shock-containing noise. Differences as a function of angle, distance, and engine condition are explored.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom