Comparison between diffuse infrared and acoustic transmission over the human skull.
Author(s) -
Qi Wang,
Namratha Reganti,
Yutoku Yoshioka,
Mark Howell,
Gregory T. Clement
Publication year - 2014
Publication title -
proceedings of meetings on acoustics
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.15
H-Index - 16
ISSN - 1939-800X
DOI - 10.1121/2.0000005
Subject(s) - skull , transmission (telecommunications) , infrared , human skull , computer science , acoustics , materials science , optics , physics , geology , telecommunications , paleontology
Skull-induced distortion and attenuation present a challenge to both transcranial imaging and therapy. Whereas therapeutic procedures have been successful in offsetting aberration using from prior CTs, this approach impractical for imaging. In effort to provide a simplified means for aberration correction, we have been investigating the use of diffuse infrared light as an indicator of acoustic properties. Infrared wavelengths were specifically selected for tissue penetration; however this preliminary study was performed through bone alone via a transmission mode to facilitate comparison with acoustic measurements. The inner surface of a half human skull, cut along the sagittal midline, was illuminated using an infrared heat lamp and images of the outer surface were acquired with an IR-sensitive camera. A range of source angles were acquired and averaged to eliminate source bias. Acoustic measurement were likewise obtained over the surface with a source (1MHz, 12.7mm-diam) oriented parallel to the skull surface and hydrophone receiver (1mm PVDF). Preliminary results reveal a positive correlation between sound speed and optical intensity, whereas poor correlation is observed between acoustic amplitude and optical intensity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom