z-logo
open-access-imgOpen Access
Fluid-structure-acoustic interactions in anex vivoporcine phonation model
Author(s) -
Marion Semmler,
David A. Berry,
Anne Schützenberger,
Michael Döllinger
Publication year - 2021
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/10.0003602
Subject(s) - phonation , vocal folds , articulatory phonetics , acoustics , larynx , vocal tract , physics , audiology , medicine , anatomy
In the clinic, many diagnostic and therapeutic procedures focus on the oscillation patterns of the vocal folds (VF). Dynamic characteristics of the VFs, such as symmetry, periodicity, and full glottal closure, are considered essential features for healthy phonation. However, the relevance of these individual factors in the complex interaction between the airflow, laryngeal structures, and the resulting acoustics has not yet been quantified. Sustained phonation was induced in nine excised porcine larynges without vocal tract (supraglottal structures had been removed above the ventricular folds). The multimodal setup was designed to simultaneously control and monitor key aspects of phonation in the three essential parts of the larynx. More specifically, measurements will comprise (1) the subglottal pressure signal, (2) high-speed recordings in the glottal plane, and (3) the acoustic signal in the supraglottal region. The automated setup regulates glottal airflow, asymmetric arytenoid adduction, and the pre-phonatory glottal gap. Statistical analysis revealed a beneficial influence of VF periodicity and glottal closure on the signal quality of the subglottal pressure and the supraglottal acoustics, whereas VF symmetry only had a negligible influence. Strong correlations were found between the subglottal and supraglottal signal quality, with significant improvement of the acoustic quality for high levels of periodicity and glottal closure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom