z-logo
open-access-imgOpen Access
Path specific Doppler compensation in time-reversal communications
Author(s) -
S. M. Jesus,
Salman I. Siddiqui,
António Silva
Publication year - 2015
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.4915005
Subject(s) - compensation (psychology) , doppler effect , channel (broadcasting) , computer science , signal (programming language) , interference (communication) , path (computing) , acoustics , angle of arrival , arrival time , algorithm , telecommunications , physics , psychology , astronomy , transport engineering , psychoanalysis , antenna (radio) , engineering , programming language
Passive time reversal (pTR) is a low complexity receiver scheme that uses multichannel probing for time signal refocusing, thus reducing time spreading and improving inter-symbol interference. Recognizing that signals traveling through different paths are subject to arrival-angle-related Doppler displacements, this letter proposes a further improvement to pTR that applies correcting frequency shifts optimized for beams formed along each specific path arrival angle. The proposed channel equalizer is tested with real data, and the results show that the proposed approach outperforms both pTR and the modified pTR channel combiners providing an MSE gain of 4.9 and 4.2 dB, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom