z-logo
open-access-imgOpen Access
Reducing the impact of wind noise on cochlear implant processors with two microphones
Author(s) -
Kostas Kokkinakis,
Casey Cox
Publication year - 2014
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 187
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.4871583
Subject(s) - microphone , acoustics , cochlear implant , intelligibility (philosophy) , audiology , noise (video) , environmental science , sound pressure , computer science , medicine , physics , philosophy , epistemology , artificial intelligence , image (mathematics)
Behind-the-ear (BTE) processors of cochlear implant (CI) devices offer little to almost no protection from wind noise in most incidence angles. To assess speech intelligibility, eight CI recipients were tested in 3 and 9 m/s wind. Results indicated that speech intelligibility decreased substantially when the wind velocity, and in turn the wind sound pressure level, increased. A two-microphone wind noise suppression strategy was developed. Scores obtained with this strategy indicated substantial gains in speech intelligibility over other conventional noise reduction strategies tested.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom