Dependences of quantitative ultrasound parameters on frequency and porosity in water-saturated nickel foams
Author(s) -
Kang Il Lee
Publication year - 2014
Publication title -
the journal of the acoustical society of america
Language(s) - English
Resource type - Journals
eISSN - 1520-8524
pISSN - 0001-4966
DOI - 10.1121/1.4862878
Subject(s) - attenuation , attenuation coefficient , materials science , porosity , backscatter (email) , ultrasound , nickel , phase (matter) , correlation coefficient , power law , polynomial , optics , acoustics , composite material , physics , mathematics , mathematical analysis , statistics , telecommunications , quantum mechanics , computer science , metallurgy , wireless
The frequency-dependent phase velocity, attenuation coefficient, and backscatter coefficient were measured from 0.8 to 1.2 MHz in 24 water-saturated nickel foams as trabecular-bone-mimicking phantoms. The power law fits to the measurements showed that the phase velocity, the attenuation coefficient, and the backscatter coefficient were proportional to the frequency with exponents n of 0.95, 1.29, and 3.18, respectively. A significant linear correlation was found between the phase velocity at 1.0 MHz and the porosity. In contrast, the best regressions for the normalized broadband ultrasound attenuation and the backscatter coefficient at 1.0 MHz were obtained with the polynomial fits of second order.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom