Acoustic Sensing of Gas Seeps in the Deep Ocean with Split-beam Echosounders
Author(s) -
Thomas C. Weber,
Kevin Jerram,
Larry A. Mayer
Publication year - 2012
Publication title -
proceedings of meetings on acoustics
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.15
H-Index - 16
ISSN - 1939-800X
DOI - 10.1121/1.4772948
Subject(s) - petroleum seep , methane , seabed , clathrate hydrate , geology , water column , flux (metallurgy) , cold seep , oceanography , deep water , echo sounding , hydrate , materials science , chemistry , organic chemistry , metallurgy
When in the form of free gas in the water column, methane seeps emanating from the seabed are strong acoustic targets that are often detectable from surface vessels using echo sounders. In addition to detecting that a seep is present at some location, it is also desirable to characterize the nature of the seep in terms of its morphology and flux rates. Here, we examine how much we can learn about seeps in the deep (> 1000 m) northern Gulf of Mexico using narrow-band split-beam echo sounders operating at fixed frequencies (18 kHz and 38 kHz). Methane seeps in this region are deeper than the methane hydrate stability zone, implying that bubbles of free gas form hydrate rinds that allow them to rise further in the water column than they otherwise would. While this behavior may aid in the classification of gas types in the seep, it is possible that the presence of hydrate rinds may also change the acoustic response of the bubbles and thereby make flux rate estimates more challenging. These and other aspects o...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom